#### Министерство науки и образования

## ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

#### ИСПЫТАТЕЛЬНАЯ ЛАБОРАТОРИЯ

#### «СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ. ТЕХНОЛОГИИ ПРОИЗВОДСТВА»

625001, г.Тюмень, ул.Луначарского,2

тел.:(3452)46-47-60

**УТВЕРЖДАЮ** 

Ректор ТюмГ У. д.т.н., профессор

В.М. Чикишев

**1**5 апреля 2011г.

#### Техническое заключение

по договору №32 ИЛ/10:

«Изучение влияния добавки «Гидротэкс» на строительно-технические свойства и долговечность бетона»

Директор Испытательной лаборатории

Г.А. Зимакова

Тюмень, 2011

# Содержание

|   | Введение                                    | 3  |
|---|---------------------------------------------|----|
| 1 | Общие сведения                              | 3  |
| 2 | Цель исследования                           | 6  |
| 3 | Сырьевые материалы и программа исследований | 6  |
| 4 | Результаты исследований                     | 10 |
| 5 | Выводы                                      | 17 |
|   | Литература                                  | 20 |

#### Введение

Работы по договору 32 ИЛ/10, заключенному между ГОУ ВПО ТюмГАСУ и ООО «Тюменьгидрострой», выполнены Испытательной лабораторией, состав работ по данному договору отражен в перечне видов строительной деятельности, на осуществление которых Исполнитель имеет Свидетельство о допуске к видам работ № П-168 от 26.03.10, выданное Некоммерческим партнерством «Объединение проектировщиков «Западная Сибирь».

Испытания проведены на основании Свидетельства о состоянии измерений № 1334 от 6 февраля 2009 г. Приборы и инструменты, используемые при измерениях, поверены и отвечают требованиям ГОСТов, СНиП, соответствующих инструкций по эксплуатации.

Содержание работ определено в соответствии с Техническим заданием Заказчика и выполнено в соответствии с положениями нормативнотехнической документации.

# 1.Общие сведения

Современные бетоны отличаются высокими эксплуатационными свойствами: проницаемость для воды эквивалентная маркам W12...W20, повышенная долговечность, характеризуемая марками по морозостойкости F300-600 наряду с высокой водонепроницаемостью для таких бетонов характерна высокая прочность. Для некоторых видов железобетонных изделий одной ИЗ важнейших характеристик является водо-и газонепроницаемость бетона. Бетоны с высокими гидроизолирующими свойствами играют основную роль В обеспечении долговечности конструкций, работающих в особом эксплуатационном режиме.

Проницаемость бетона характеризуется прямыми показателями: маркой бетона по водонепроницаемости или коэффициентом фильтрации; косвенные показатели: водопоглощение бетона и водоцементное отношение, являются ориентировочными и дополнительными к прямым показателям.

Показатели, отражающие взаимосвязь технических свойств и характеристику бетона по проницаемости, приведены в табл. 1.

Таблица 1

| Условные      | Показатели проницаемости бетона |                                                   |                 |       |  |  |  |  |  |  |
|---------------|---------------------------------|---------------------------------------------------|-----------------|-------|--|--|--|--|--|--|
| обозначения   | прямые                          |                                                   | косвенные       |       |  |  |  |  |  |  |
| показателя    | марка бетона по                 | коэффициент                                       | водопоглощение, | В/Ц,  |  |  |  |  |  |  |
| проницаемости | водонепроницаемости             | фильтрации,                                       | % по массе      | не    |  |  |  |  |  |  |
| бетона        |                                 | см/с                                              |                 | более |  |  |  |  |  |  |
| Н - бетон     | W4                              | Св. 2·10 <sup>-9</sup> до                         | Св. 4,7 до 5,7  | 0,6   |  |  |  |  |  |  |
| нормальной    |                                 | $7.10^{-9}$                                       |                 |       |  |  |  |  |  |  |
| проницаемости |                                 |                                                   |                 |       |  |  |  |  |  |  |
| П - бетон     | W6                              | Св. 6·10 <sup>-10</sup><br>до 2·10 <sup>-9</sup>  | Св. 4,2 до 4,7  | 0,55  |  |  |  |  |  |  |
| пониженной    |                                 | до 2·10 <sup>-9</sup>                             |                 |       |  |  |  |  |  |  |
| проницаемости |                                 |                                                   |                 |       |  |  |  |  |  |  |
| О - бетон     | W8                              | Св. 1·10 <sup>-10</sup><br>до 6·10 <sup>-10</sup> | До 4,2          | 0,45  |  |  |  |  |  |  |
| особо низкой  |                                 | до 6·10 <sup>-10</sup>                            |                 |       |  |  |  |  |  |  |
| проницаемости |                                 |                                                   |                 |       |  |  |  |  |  |  |

Водонепроницаемость бетонов зависит от структуры и характера пористости. Бетон, будучи капиллярно-пористым телом, при наличии соответствующего градиента давления проницаем для воды; при непосредственном контакте с водой происходит водопоглощение бетона, за счет капиллярного подсоса вода способна перемещаться по очень мелким капиллярам на относительно большие расстояния (теоретически на 4,15 м).

В основе обеспечения высокой водонепроницаемости бетонов лежит ряд факторов:

- 1. Правильный выбор цемента, заполнителей и назначение оптимального состава бетона:
- 2. Применение бетонных смесей с В/Ц отношением 0.4-0.5, чем выше В/Ц, тем ниже прочность и водонепроницаемость бетона. В более поздние сроки твердения (180 суток), пористость бетона тем ниже, чем меньше В/Ц;
- 3. Применение специальных модифицирующих добавок, т.к. происходящие в цементной системе сложные коллоидно-химические и физические явления, которые поддаются воздействию модификатора, отражаются, в конечном счете, на пористости, прочности и долговечности цементного камня;

- 4. Применение эффективных технологий укладки бетонной смеси. Поры возникают в результате недостаточного уплотнения смеси при укладке и от избыточного количества воды, требуемого для обеспечения достаточной удобоукладываемости бетонной смеси. Излишняя вода обуславливает формирование системы сообщающихся капиллярных пор, которые служат основными путями для фильтрации воды;
- 5. Обеспечение должных условий твердения бетона. Изменение водонепроницаемости бетона неотделимо от тех условий, при которых происходит его твердение. При воздушном хранении, в условиях испарения из бетона воды; рост водонепроницаемости бетона замедляется тем больше, чем полнее происходит его обезвоживание. При больших потерях воды возникают микро- и макродефекты, рост водонепроницаемости бетона прекращается;
- 6. Учет фактора, что с увеличением возраста бетона изменяется характер его пористости, постепенно уменьшается объем макропор, за счет формирования в поровом пространстве продуктов гидратации цемента, поры становятся условно дискретными.

В настоящее время наиболее часто повышение водонепроницаемости бетона обеспечивают за счет применения в составе бетонной смеси специальных модифицирующих добавок, однако влияние модификаторов на свойства бетонных смесей и бетонов, кинетику гидратации цемента является не однозначным, наряду с приданием основного положительно эффекта действия могут быть изменены некоторые другие важные свойства. Влияние добавок также зависит от вида и расхода применяемого цемента, водоцементного фактора и ряда других параметров, поэтому для внедрения в практику производят всестороннее исследование влияния добавок на свойства бетонной смеси и бетонов.

#### 2. Цель исследования

Исследования выполнены с применением добавки Гидротэкс. Группа материалов маркировки «Гидротэкс» используется в основном для устройства капиллярно-прерывающей гидроизоляции.

В данной работе изучены физико-механические свойства бетона с добавкой Гидротэкс В, в качестве компонента бетонной смеси.

Основная цель введения добавки Гидротэкс: повысить водонепроницаемость бетонов.

Краткая характеристика: добавка Гидротэкс является комплексной органоминеральной добавкой, сочетающей в себе органическую составляющую в виде пластификатора и ускорителя процесса твердения и минерального компонента; представляет собой тонкодисперсный порошок.

# 3. Сырьевые материалы и программа исследований

Вяжущее. Экспериментальные данные получены при использовании портландцемента Сухоложского цементного завода марки 400; вещественный состав: доменный гранулированный шлак до 15 %, минеральная добавка до 3%; минералогический состав:  $C_3$  S - 60-63%;  $C_2$ S - 13-14%,  $C_3$  A-7%,  $C_4$ AF -14%-15%.

Крупный заполнитель: щебень гранитный, зерновой состав - фракции 5-10, марки по прочности П1200, удовлетворяющий всем требованиям стандартов.

Мелкий заполнитель. В качестве мелкого заполнителя использован песок Махневского месторождения, соответствующий требованиям стандартов, предъявляемых к строительным пескам I группы.

Проектирование состава бетона произведено с использованием эмпирических формул, связывающих прочность бетона со свойствами вяжущего, заполнителей и водоцементным отношением.

Испытания проведены в соответствии с требованиями ГОСТ 310.1-76 «Цементы. Методы испытаний», ГОСТ 31108-2003 «Цементы общестроительные. Технические условия», ГОСТ 10181-2000 «Смеси бетонные. Методы испытаний», ГОСТ 10060 «Бетоны. Методы определения морозостойкости», ГОСТ 10180-90 «Бетоны. Методы определения прочности по контрольным образцам»

Работу выполняли в следующей последовательности:

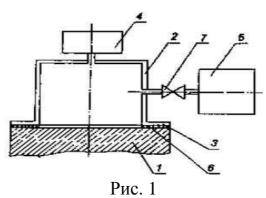
1. Из цементно-песчаного раствора с добавкой Гидротэкс В были изготовлены образцы – кубы с ребром 7см (подвижность смеси постоянна). Результаты испытаний цементно-песчаных образцов на прочность представлены в таблице 2, установлено, что с увеличением количества добавки прочность цементно-песчаного раствора постепенно возрастает, в дальнейших исследованиях дозировки добавки назначены – 2 и 5 масс % ( от массы цемента).

 Таблица 2

 Результаты испытания цементно-песчаных образцов на прочность

| № состава   | Прочі | ность на<br>возрас | Плотность кг/м <sup>3</sup> |      |      |  |  |  |
|-------------|-------|--------------------|-----------------------------|------|------|--|--|--|
|             | 1     | 1 3 7 28           |                             |      |      |  |  |  |
| контрольный | 6,3   | 12,2               | 17,7                        | 26,4 | 2250 |  |  |  |
| добавка 1%  | 7,4   | 15,8               | 18,1                        | 26,6 | 2234 |  |  |  |
| добавка 2%  | 7,9   | 16,0               | 18,9                        | 30,2 | 2281 |  |  |  |
| добавка 3%  | 9,4   | 18,2               | 21,0                        | 31,7 | 2310 |  |  |  |
| добавка 4%  | 11,6  | 19,3               | 21,7                        | 32,3 | 2268 |  |  |  |
| добавка 5%  | 12,4  | 19,5               | 22,2                        | 36,8 | 2353 |  |  |  |

2. Из цемента, щебня и песка изготавливали бетонную смесь с водоцементным отношением равным 0.45, затем формовали образцы размером 10×10×10 см и образцы-цилиндры диаметром 15 см, высотой 15 см, данные составы рассматривались как контрольный. Следующие серии образцов изготовлены с введением в состав смеси добавки Гидротэкс в дозировках 2, 5 мас. %. Образцы помещались в ванну с гидравлическим затвором. Через 24 часа образцы извлекали из форм и хранили до момента испытания в воздушно-влажных условиях. Предел прочности при сжатии определяли через 3, 7, 14 и 28 суток твердения.


Для решения задач, связанных с изучением влияния добавки на кинетику гидратационных процессов, строительно-технические свойства бетонов, проанализирована прочность твердеющей системы в различные

сроки твердения, водонепроницаемость в возрасте 28 и 180 суток, пористость, морозостойкость.

Контроль прочности бетонных образцов при сжатии проводился по стандартной методике.

Марку бетона по водонепроницаемости определяли по ГОСТ 12730.5-84; водопоглощение бетона - по ГОСТ 12730.3-78.

Для проведения испытаний по водонепроницаемости использовано устройство типа «Агама-2Р» (метод воздухопроницаемости бетона), принципиальная схема которого приведена на черт. 1. В соответствии с инструкцией по эксплуатации устройства, определяли значение параметра воздухопроницаемости бетона, см $^3$ /с, каждого образца в возрасте 28 и 180 суток твердения. Водонепроницаемость бетона ( $a_i$ ) определена по табл.3.



1 - бетонный образец; 2 - камера устройства; 3 - фланец камеры; 4 - датчик; 5 - вакуум-насос: 6 - герметизирующая мастика; 7 - вентиль

Поровую структуру бетона изучали по кинетике водопоглощения (стандартный метод) и величине сорбционной влажности, по результатам хранения образцов в герметичной камере с относительной влажностью воздуха более 95 %.

Таблица 3

| Параметр                            | Марка бетона по    | Параметр                            | Марка бетона по    |
|-------------------------------------|--------------------|-------------------------------------|--------------------|
| воздухопроницаемост                 | водонепроницаемост | воздухопроницаемост                 | водонепроницаемост |
| и бетона $a_c$ , cм <sup>3</sup> /c | и W                | и бетона $a_c$ , cм <sup>3</sup> /c | и W                |
| 0,325 - 0,224                       | 2                  | 0,0509 - 0,0345                     | 12                 |
| 0,223 - 0,154                       | 4                  | 0,0344 - 0,0238                     | 14                 |
| 0,153 - 0,106                       | 6                  | 0,0237 - 0,0164                     | 16                 |

| Параметр                            | Марка бетона по    | Параметр                            | Марка бетона по    |
|-------------------------------------|--------------------|-------------------------------------|--------------------|
| воздухопроницаемост                 | водонепроницаемост | воздухопроницаемост                 | водонепроницаемост |
| и бетона $a_c$ , cм <sup>3</sup> /c | и <i>W</i>         | и бетона $a_c$ , cм <sup>3</sup> /c | и <i>W</i>         |
| 0,105 - 0,0728                      | 8                  | 0,0163 - 0,0113                     | 18                 |
| 0,0727 - 0,0510                     | 10                 | 0,0112 - 0,0077                     | 20                 |

Ha обзора способов основании имеющихся определения прогнозирования морозостойкости принят метод дилатометрических испытаний, основанный на связи структурных характеристик бетонов с их морозостойкостью дающий результаты c удовлетворительной И корреляционной связью полученных деформативных характеристик с морозостойкостью бетонов, определяемой методом прямого замораживания и оттаивания. Графопостроитель во время замораживания непрерывно фиксирует объёмных деформаций кривую разности бетонного стандартного образцов, испытания проведены для бетонов контрольного состава и бетонов с добавкой Гидротэкс В.

С целью установления влияния добавки на реологические свойства бетонной смеси, изучен характер изменения подвижности бетонной смеси во времени, определен коэффициент водоотделения цементного теста с добавкой Гидротэкс в сравнении со свойствами цементного теста не содержащего добавки.

## 4. Результаты исследований

По результатам испытания бетонов с различным расходом цемента, включая состав контрольный (без добавки) и с добавкой Гидротэкс, получены зависимости, отраженные на рисунке 2



Рис.2. Прочность бетона в зависимости от расхода цемента и количества введенной добавки

Таблица 4 Скорость набора прочности бетона в различные сроки твердения

| Цемент, кг/м <sup>3</sup> | Добавка, кг/м <sup>3</sup> | Прочность при сжатии, МПа |        |  |  |  |
|---------------------------|----------------------------|---------------------------|--------|--|--|--|
| Lewelli, Ki/W             | добивки, кітм              | 3 сут                     | 28 сут |  |  |  |
| 320                       | нет                        | 9.7                       | 21.7   |  |  |  |
| 320                       | 16                         | 12.3                      | 32.2   |  |  |  |
| 390                       | нет                        | 14.2                      | 32.2   |  |  |  |
| 390                       | 19.5                       | 21.9                      | 40.2   |  |  |  |
| 460                       | нет                        | 17.8                      | 37.9   |  |  |  |
| 460                       | 23                         | 25.3                      | 45.1   |  |  |  |

Из табл. 4. видно, что образцы с добавкой Гидротэкс В, в 5-ти процентной дозировке от массы цемента, обладают высокими прочностными характеристиками, а именно, прочность превалирует над прочностью исходных бездобавочных составов на 20-25%.

С введением добавки не только повышается марка бетона, но и значительно ускоряется интенсивность нарастания прочности бетона, следовательно, добавка Гидротэкс В ускоряет процессы гидратации и обеспечивает уплотнение структуры цементного камня в ранние сроки ее формирования.

Водонепроницаемость бетонов изучена на оптимальном составе бетона (Табл.5), отвечающего по прочности при сжатии классу В25.

Таблица 5

| Компоненты                      | Расход компонентов, кг/м3 |                           |  |  |  |  |
|---------------------------------|---------------------------|---------------------------|--|--|--|--|
|                                 | контрольный состав        | с добавкой<br>Гидротэкс В |  |  |  |  |
| Цемент М400                     | 435                       | 435                       |  |  |  |  |
| Щебень                          | 1167                      | 1167                      |  |  |  |  |
| Песок                           | 676                       | 676                       |  |  |  |  |
| Вода                            | 195                       | 195                       |  |  |  |  |
| Добавка Гидротэкс               |                           | 22                        |  |  |  |  |
| Плотность бетонной смеси, кг/м3 | 2473                      | 2495                      |  |  |  |  |

Прогрессирующая гидратация цемента в присутствии добавки вызывает качественное изменение пористости цементного камня — уменьшение капиллярной пористости, снижение водопоглощения бетонов с добавкой произошло в среднем с 4 до 2%, водоглощение бетонов оптимального состава, табл. 6.

Таблица 6 Результаты определения водопоглощения бетонов

| Состав                    | Водопоглощение, % |
|---------------------------|-------------------|
| контрольный               | 3,27              |
| 28 сут.                   | 3,94              |
|                           | 4.03              |
| с добавкой Гидротэкс, 5 % | 1,53              |
| 28 сут.                   | 1,4               |
|                           | 1,6               |
|                           | 1,9               |
|                           | 1,92              |

Таблица 7

# Микрокапиллярная пористость бетонов с добавкой Гидротэкс

|              | Капилля | п квная |                                                   |     |              |
|--------------|---------|---------|---------------------------------------------------|-----|--------------|
| № состава    | В       | возрас  | Плотность $6 \text{ бетона}$ , $6 \text{ кг/m}^3$ |     |              |
|              | 1       | 3       | 7                                                 | 28  | Octona, Ki/M |
| контр. 1     | 8,3     | 6,0     | 4,9                                               | 4,5 | 2485         |
| контр.2      | 8,0     | 5,9     | 4,2                                               | 3,3 | 2443         |
| 3 с добавкой | 5,9     | 4,9     | 2,8                                               | 2,2 | 2539         |
| 4 с добавкой | 5,8     | 4,1     | 2,3                                               | 2,0 | 2526         |

Сопротивление движению воды оказывают в основном капиллярные поры, как установлено введение добавки приводит к снижению величины капиллярной пористости (Рис.3).

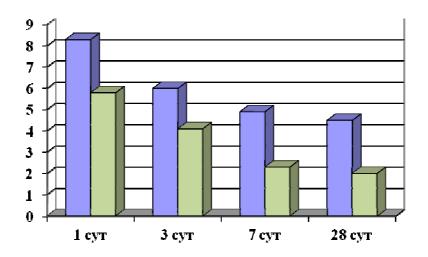



Рис.4. Изменение пористости с возрастом бетона Капиллярная пористость: контрольного бетона; бетона с добавкой.

Процесс льдообразования в бетоне зависит от капиллярнопористого пространства. В таблице 8, рис.5 приведены данные по величине объемных деформаций при замерзании бетонов. По результатам исследования установлено, что без использования добавки объемные деформации при замерзании в 1,7 раза выше, чем имеет бетон с добавкой Гидротэкс В. Влияние дозировки добавки Гидротэкс на морозостойкость, вероятно, в основном обусловлено более полной гидратацией цемента.

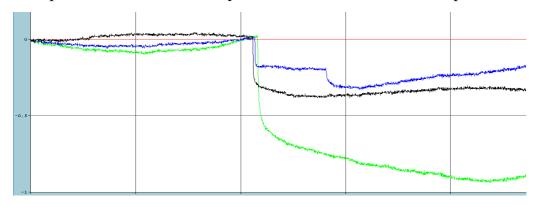



Рис.5. Дифференциальные кривые деформации бетона при замерзании: --- контрольный состав, ---- и ----- бетон с добавкой Гидротэкс.

Результаты испытания морозостойкости

| Состав № | Марка по | Разность объёмной |
|----------|----------|-------------------|

Таблица 8

|        | морозостойкости | деформации, $\theta \cdot 10^{-3}$ |
|--------|-----------------|------------------------------------|
| Контр. | F200            | 0,660                              |
|        | F300            | 0,644                              |
| 3      | F300            | 0,390                              |
| 4      | F300            | 0,387                              |
| 9      | F300            | 0,393                              |

Таблица 9 Марка бетона по морозостойкости F по максимальной относительной разности объемных деформаций

| Форма и размер      | Вид бетона |       |               | -             |               |               |               | объеми<br>ки бетона |               |               |               | онного и  |
|---------------------|------------|-------|---------------|---------------|---------------|---------------|---------------|---------------------|---------------|---------------|---------------|-----------|
| образца,<br>мм      | остона     | F25   | F35           | F50           | F75           | F100          | F150          | F200                | F300          | F400          | F500          | F600      |
| Куб с<br>ребром 100 | Тяжелый    | >3,80 | 3,80-<br>3,60 | 3,60-<br>3,50 | 3,50-<br>2,40 | 2,40-<br>1,70 | 1,70-<br>1,00 | 1,0-<br>0,65        | 0,65-<br>0,33 | 0,33-<br>0,20 | 0,20-<br>0,18 | 0,18-0,08 |

С увеличением возраста бетона изменяется характер его пористости, постепенно уменьшается объем макропор, которые как бы зарастают продуктами гидратации цемента, и в результате уменьшается проницаемость (таблица 10).

Таблица 10 Водонепроницаемость бетона

|                                    | Возраст бетона, сут | Параметр                          | Марка бетона по     |
|------------------------------------|---------------------|-----------------------------------|---------------------|
|                                    |                     | воздухопроницаемости              | водонепроницаемости |
|                                    |                     | бетона $a_c$ , см <sup>3</sup> /с | W                   |
| Контрольный состав<br>бетона       | 28                  | 0,153 - 0,106                     | 6                   |
| Контрольный состав<br>бетона       | 180                 | 0,0727 - 0,0510                   | 10                  |
| Состав бетона с добавкой Гидротэкс | 28                  | 0,0509 - 0,0345                   | 10                  |
| Состав бетона с добавкой Гидротэкс | 180                 | 0,0344 - 0,0238                   | 14                  |

Прим. Хранение образцов: герметично, в условиях относительной влажности более 90%

По результатам испытания по ГОСТ 12730.5-84 установлена водонепроницаемость в возрасте 28 суток:

- Для бетона контрольного состава отсутствие «мокрого пятна» при давлении 0.6 МПа, что соответствует марке W6;
- Для бетона с добавкой Гидротэкс В отсутствие «мокрого пятна» при давлении 10 МПа, водонепроницаемость отвечает марке W10

С увеличением возраста бетона изменяется характер его пористости, постепенно уменьшается объем макропор, которые зарастают продуктами гидратации цемента, в результате уменьшается проницаемость, что отмечено повышением сопротивления в возрасте 180 суток воздухопроницанию,:

- Для бетона контрольного состава сопротивление воздухопроницанию составило 0,0730 что соответствует марке –W10;
- Для бетона с добавкой Гидротэкс сопротивление воздухопроницанию составило 0,0330 что соответствует марке W14

Пористость к 180 суткам становится условно дискретной, т.е. поры представленные в раннем возрасте в виде сообщающихся капилляров переходят в условно замкнутые. Подобное строение порового пространства возникает тем раньше, чем меньше водоцементный фактор, т.к. чем ниже В/Ц тем меньше радиус капилляров и тем больше возможность их разделения цементными новообразованиями. Рост водонепроницаемости, от исходных величин в возрасте 28 дней, произошел на 4 марки.

Серия образцов подвергалась тепловой обработке по режиму 2+6+2 при температуре 80°C.

По результатам испытаний установлено, что прочность бетонов, в состав которых включена добавка Гидротэкс на 44% выше прочности бетона контрольного состава, и достигает 80% от 28-ми суточной нормального твердения. Водонепроницаемость пропаренного бетона соответствует марке W8 для добавочного состава и марке W4 для контрольного.

# Реологические свойства цементного теста и бетонных смесей с добавкой Гидротэкс.

В таблице 11 приведены результаты испытания цементного теста на водоотделение и влияние добавки Гидротэкс на данный процесс. Установлено, что добавка практически не влияет на устойчивость цементного теста во времени.

Таблица 11 Водоотделение цементного теста

| Характеристика<br>состава                      | Исходный объем цементного теста, мл | Объем после седиментации, мл | Коэффициент водоотделени я, % |
|------------------------------------------------|-------------------------------------|------------------------------|-------------------------------|
| цемент, вода,<br>В/Ц=0.5                       | 455                                 | 400                          | 12.1                          |
| цемент, вода,<br>В/Ц=0.5,<br>добавка Гидротэкс | 465                                 | 405                          | 12.9                          |

Жизнеспособность бетонной смеси во времени устанавливалась по результатам сохранения первоначальной подвижности бетонной смеси. В процессе испытаний установлено снижение подвижности смеси во времени, начальное изменение диагностируется по истечению 30 минут, что обусловлено ускоряющим эффектом действия добавки на гидратацию цемента и соответственно, сокращением срока схватывания цемента. При введении добавки интенсифицируются процессы гидратации цемента, соответственно, сокращается продолжительность пластичного состояния бетонной смеси.

#### 5. Выводы

Основная цель применения добавки «Гидротэкс В»: повысить водонепроницаемость бетонов - обеспечивается.

Как было установлено, использование добавки Гидротэкс позволяет получить на основе рядовых вяжущих бетоны с высокими эксплуатационными характеристиками и уникальными конструкционными возможностями:

- Формирование высокой прочности в начальные сроки твердения;
- Получение бетонов с высокой морозостойкостью;
- Повышение водонепроницаемости на две-три марки.

Технологические свойства, который следует обязательно учитывать при применении в составе бетонных смесей добавки Гидротэкс В:

- снижение подвижности смеси на одну марку за 30 минут хранения;
- наличие водоотделения бетонной смеси, за счет которого может сформироваться поверхностный слой пористого бетона

Краткая характеристика: добавка Гидротэкс является комплексной органоминеральной добавкой, сочетающей в себе органическую составляющую в виде пластификатора и ускорителя процесса твердения и минерального компонента, представляет собой тонкодисперсный порошок.

*Условия поставки*. Модифицирующая добавка для бетонов поставляется в полипропиленовых мешках и полимерных ведрах.

*Условия применения*. Применение Гидротэкса В при производстве бетонов может осуществляться по принятой на бетоносмесительных узлах схеме приема, хранения порошкообразных продуктов. Введение Гидротэкса В осуществляется без предварительного растворения добавки.

*Технические* эффекты. Эффективность применения Гидротэкса изучена на бетонах, изготовленных с использованием портландцемента марки М400, заполнителях, отвечающих требованиям нормативной документации.

Установлено, что за счет введения добавки обеспечивается получение бетонов:

- Прочностью 40-45 МПа;
- Ранней прочностью при твердении в нормальных условиях до 25 МПа;
- Низкой проницаемости, марки W10-14;
- Долговечностью F300.

Добавка Гидротэкс обеспечивает повышение водонепроницаемости, путем кальматации пор новообразованиями при использовании в качестве добавки на стадии приготовления бетона или цементно-песчанного раствора. Водопроницаемость, объясняется его специфической структурой.

Водонепроницаемый бетон, который за счет своей структуры (поры и микродефекты заполнены продуктами гидратации) способен сопротивляться проникновению воды при давлении 1 МПа и более. Для обеспечения высокого эффекта необходимо применять бетонные смеси с водо-цементным отношением 0.4 - 0.5.

Применение бетонов с добавкой Гидротэкс позволяет отказаться от «вторичной» защиты конструкций (обмазочной, оклеечной и другой изоляции).

По показателям проницаемости бетон с добавкой относится к категории бетон особо низкой проницаемости, с коэффициентом фильтрации от $1\cdot 10^{-10}$  до  $6\cdot 10^{-10}$  см/с .

В более поздние сроки твердения (180 суток, когда степень гидратации цемента не существенно зависит от добавок), пористость бетона тем ниже, чем меньше В/Ц.

Гидротэкс В - это добавка, обеспечивающая определенную скорость твердения и позволяющая при традиционных приемах приготовления бетонной смеси и режимах твердения получать заданную начальную прочность: при концентрации добавки ГИДРОТЭКС 5 % бетоны на 3 сутки твердения обладают высокими прочностными характеристиками, прочность превалирует над прочностью исходных бездобавочных составов на 20-25%.

Повышение дозировок добавки не целесообразно. Собственные напряжения в твердеющем цементном камне возникают на таком этапе

твердения цемента, когда поры, уменьшающиеся в процессе гидратации, достигнут таких размеров, при которых с данной степенью пересыщения жидкой фазы становится невозможным их прорастание растущими кристаллогидратами. Рост кристаллов в поровом пространстве цементного камня будет сопровождаться возникновением собственных напряжений от кристаллизационного давления. Чем больше кристаллизационное давление, тем выше обусловленные им собственные напряжения. Внешним проявлением действия собственных напряжений являются: снижение интенсивности роста прочности цемента.

В связи с высокой стоимостью цемента, возникает вопрос его рационального использования в строительстве. Одним из способов увеличения его активности является химическая активация, с помощью добавки Гидротэкс В, которая позволяет более полно использовать потенциал цемента. В табл. 12 рассмотрено влияние различных способов ускорения твердения бетона, в сравнении.

| Способ ускорения твердения          | Повышение прочности по       |         |
|-------------------------------------|------------------------------|---------|
|                                     | сравнению с контрольным, % в |         |
|                                     | возрасте, сут.               |         |
|                                     | 1                            | 2       |
| Применение быстротвердеющего        | 130-170                      | 115-135 |
| цемента                             |                              |         |
| Применение цемента с высокой        | 200-250                      | 150-200 |
| удельной поверхностью до 5000 см2/г |                              |         |
| Добавка-ускоритель                  | 150-200                      | 125-150 |
| Добавка Гидротэкс                   | 175                          | 135     |

Исполнитель:

Инженер

J

Зелиг М. П.

# Литература

- 1. Афанасьев А.А. Интенсификация работ при возведении зданий и сооружений из монолитного железобетона.- М.; Стройиздат, 1990.- 384 с.
- 2. Ахвердов И.Н. Основы физики бетона. М.; Стройиздат 1981.- 464 с.
- 3. Баженов Ю.М., Комар А.Г. Технология бетонных и железобетонных изделий. М.; Стройиздат, 1984. 672 с.
- 4. Батраков В.Г. Модифицированные бетоны.-М.; Стройиздат. 1990.- 400 с.
- 5. ГОСТ 24211. Добавки к бетонам. Классификация.- М., 1980.
- 6. Добавки к бетонам: Справочное пособие / В.С.Рамачадран., Р.Ф.Фельдман, М.Коллепарди и др.; Под ред. В.С.Рамачандрана.- М.; Стройиздат. 1988.- 575 с.
- 7. Ларионова 3.М. Формирование структуры цементного камня и бетона.-М.; Стройиздат, 1971.\_ 161 с.
- 8. Рамачандран В., Фельдман Ф., Бодуэн Д.Ж. Наука о бетоне.- М.; Стройиздат 1986.- 280 с.
- 9. Ратинов В.В., Розенберг Т.И. Добавки в бетон. М.; Стройиздат, 1989.-207
- 10. Руководство по применению химических добавок в бетон.- М.; Стройиздат. 1980.- 55 с.
- 11. Руководство по подбору состава тяжелого бетона М.; Стройиздат, 1979.
- 12. Штарк Й. Взаимосвязь между гидратацией цемента и долговечностью бетона. Цемент.- М. 1996. Специальный выпуск.- 39-45 с.